CS6200
Information Retrieval

David Smith
College of Computer and Information Science
Northeastern University

Indexing Process

Document data store

- Text Acquisition
N
E-mail, Web pages, s
News articles, Memos, Letters

Text Transformation

Index Creation

Index

Indexes

Storing document information for faster queries

Indexes | Index Compression | Index Construction | Query Processing

Indexes

* Indexes are data structures designed to make
search faster
— The main goal is to store whatever we need in order
to minimize processing at query time
« Text search has unique requirements, which leads
to unique data structures

« Most common data structure is inverted index

— A forward index stores the terms for each document
* As seen in the back of a book

— An inverted index stores the documents for each term
« Similar to a concordance

A Shakespeare Concordance

:a. :rxrl_(ﬂ_li"r.

Indexes and Ranking

* Indexes are designed to support search
— faster response time, supports updates

» Text search engines use a particular form of
search: ranking

— documents are retrieved in sorted order according
to a score computing using the document
representation, the query, and a ranking algorithm

« What is a reasonable abstract model for
ranking?

— This will allow us to discuss indexes without
deciding the details of the retrieval model

Abstract Model of Ranking

9.7 fish

4.2 tropical tropical fish
Fred's Tropical Fish Shop is) Quer
the best place to find 22.1 tI'OplCEll ﬁSh Y

tropical fish at low, low /
prices. Whether you're 8.2 seaweed

looking for a little fish or a 4.2 surfboards
big fish, we've got what you

need. We even have fake Topical Features
seaweed for your fishtank

(and little surfboards too). \

14 incoming links

24.5

Document Score

Ranking Function

3 days since last update

Document Quality Features

More Concrete Model

g; is a query feature function

R(Q, D) — Z gz(Q)fz(D) fi 1s a document feature function

f 9.7 fish p fish 5.2

T 4.2 tropical —» tropical 3.4 gi

Fred's Tropical Fish Shop is 1) .

the best place to find 22.1 tropical fish q— p tropical fish 9.9

tr(.)pical fish at low, I?W / 87 seaweed chichlids 1.2

prices. Whether you're

looking for a little fish or a 4.2 surfboards barbs 0.7

big fish, we've got what you tropical fish
need. We even have fake Topical Features Topical Features

seaweed fOI' your ﬁshtank Query

(and little surfboards too). \
14 incoming links q———p» incominglinks 1.2

3 update count » update count 0.9

Document Quality Features Quality Features

303.01

Document Score

Inverted Index

 Each index term is associated with an
inverted list

— Contains lists of documents, or lists of word
occurrences in documents, and other
information

— Each entry is called a posting

— The part of the posting that refers to a specific
document or location is called a pointer

— Each document in the collection is given a
unique number

— Lists are usually document-ordered (sorted by
document number)

Example “Collection”

Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
Species.

Fishkeepers often use the term tropical fish to refer only
those requiring fresh water, with saltwater tropical fish re-
ferred to as marine fish.

Tropical fish are popular aquarium fish, due to their often
bright coloration.

In freshwater fish, this coloration typically derives from iri-
descence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish

Simple Inverted

Index

and
aquarium
are

around
as

both
bright
coloration
derives
due

environments

fish
fishkeepers

found
fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

only
pigmented
popular
refer
referred
requiring
salt
saltwater
species
term

the

314 their

L\DMQHHH#%HL\DHMHHW%WOOHL\DHOOWH

this
those

to
tropical
typically
use
water
while
with

world

HM%HM%HMMQWHMHL\DHL\DMMWI&H

11

Inverted Index
with counts

supports better
ranking algorithms

and
aquarium
are

around
as

both
bright
coloration
derives
due

environments

fish
fishkeepers

found
fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

only
3:1 pigmented
3:1 4:1 popular
1:1 refer
referred
requiring
salt
saltwater
species
term
the
1:2(]2:3] [3:2] | 4:2 their
2:1 this
1:1 those
2:1 to
tropical
typically
use
water
while
with
world
2:113:1

2:1
4:1
3:1

'—‘MHMN’M
==~~~

--

3:1

4:1

2:1

2:2(13:1
11:2| [2:2] [3:1]
[1:1) [2:1] [4:1]

12

and marine
aquarium | 3,5 often |2,2 ‘ |3,10‘
are ’8,3 | |4,14| only
around |1,9 pigmented |4,16
Inverted Index = populs:
. _ both refer
with positions b referred
coloration 3,12 [4,5 | requiring | 2,12
derives salt | 1,16 | | 4,11 ‘
° Supports . due saltwat.er
. . environments 1,8 species | 1,18
proximity matches s [12][T4][27] [218] [223] tem
3,2 13,6 ‘ 4,3 the 1,10| 2,4
their
fishkeepers |2,1 this |44
found those |[2,11
fresh 2,13 to (2,8 |{2,20][3,8 |
freshwater | 1,14 (4,2 | tropical [1,1 | [1,7][2,6 | [2,1T] [3,1
from |48 typically |4,6
generally use |2,3
in [16 |41 | water | 1,17 2,14 [4,12]
include while
including with
iridescence 4,9 world |1,11

13

Proximity Matches

* Matching phrases or words within a
window
—e.g., 'tropical fish", or “find tropical
within 5 words of fish”

* Word positions in inverted lists make
these types of query features efficient

- e. g. ,
tropical |1,1 1,7 2,6 ST 3.1

fish |1,2 1,4 2,0 | |28 12,23 | |32 | |36 | |43

413

Fields and Extents

e Document structure is useful in search

— field restrictions
* e.g., date, from:, etc.

— some fields more important
¢ e.g., title
* Options:
— separate inverted lists for each field type
— add information about fields to postings
— use extent lists

Extent Lists

* An extent is a contiguous region of a
document

— represent extents using word positions
—inverted list records all extents for a given

field type
—e.g.,
fish 1,2 1,4 2,7 2,18 112,23 | 3,2 3,0 4,3 4,13
title [1:(1,3) 2:(1,5) 4:(9,15)

3

extent list

Other Issues

* Precomputed scores in inverted list

—e.gd., list for “fish” [(1:3.6), (3:2.2)], where
3.6 is total feature value for document 1

— improves speed but reduces flexibility

 Score-ordered lists

— query processing engine can focus only on the
top part of each inverted list, where the
highest-scoring documents are recorded

— very efficient for single-word queries

Index Compression

Managing index size efficiently

Indexes | Index Compression | Index Construction | Query Processing

Compression

* Inverted lists are very large

— e.g., 25-50% of collection for TREC collections
using Indri search engine

— Much higher if n-grams are indexed

« Compression of indexes saves disk and/or
memory space
— Typically have to decompress lists to use them

— Best compression techniques have good
compression ratios and are easy to decompress

* Lossless compression - no information lost

Compression

 Basic idea: Common data elements use
short codes while uncommon data
elements use longer codes

— Example: coding numbers

* number sequence:
0,1,0,3,0,2,0

 possible encoding:
00 01 00 10 00 11 00

« encode 0 using a single O:
0010100110

 only 10 bits, but...

Compression Example

 Ambiguous encoding - not clear how to
decode
« another decoding:

0010100110
* which represents:

0,1,1,0,0,3,0
Number | Code

e use unambiguous code: 0 0
1 101
2 110
3 111

* which gives:
0101 011101100

Compression and Entropy

* Entropy measures “randomness”
— Inverse of compressability

H(X)=-), p(X = x)log, P(X=X)

1.0 -

— Log2: measured in bits
— Upper bound: log n >

-] -
— LD T+

— Example curve for binomial

Compression and Entropy

* Entropy bounds compression rate
— Theorem: H(X) < E[|encoded(X)]|]
— Recall: H(X) < log(n)
— n is the size of the domain of X
» Standard binary encoding of integers optimizes
for the worst case where choice of numbers is
completely unpredictable
* |t turns out, we can do better. At best:
— H(X) < E[|encoded(X)|] < H(X) + 1
— Bound achieved by Huffman codes

Delta Encoding

* Word count data is good candidate for
compression

— many small numbers and few larger numbers
— encode small numbers with small codes

* Document numbers are less predictable

— but differences between numbers in an
ordered list are smaller and more predictable

* Delta encoding:

— encoding differences between document
numbers (d-gaps)

— makes the posting list more compressible

Delta Encoding

Inverted list (without counts)
1,5,9,18,23, 24, 30, 44, 45, 48

Differences between adjacent numbers
1,4,4,9,5,1,6,14,1,3

Differences for a high-frequency word are

easier to compress, e.g.,
1,1,2,1,5,1,4,1,1,3, ...

Differences for a low-frequency word are large,

e.g.,
109, 3766, 453, 1867, 992, ...

Bit-Aligned Codes

 Breaks between encoded numbers can
occur after any bit position

* Unary code
— Encode k by k 1s followed by O
— 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

O = W N~ O

Unary and Binary Codes

* Unary is very efficient for small numbers
such as 0 and 1, but quickly becomes very
expensive

— 1023 can be represented in 10 binary bits, but
requires 1024 bits in unary

* Binary is more efficient for large numbers,
but it may be ambiguous

Elias-y Code

* More efficient when smaller numbers are more common
« Can handle very large integers
* To encode a number k, compute

o ky = |log, k]

o k. =k — 2llog2 k]
« k, is number of binary digits, encoded in unary

Number (k) | kg | k. | Code

1] 0 00

2 1 0100

3 1 11101

6| 2 2 | 110 10

15 3 7| 1110 111

16 | 4 0 | 11110 0000
255 7| 127 | 11111110 1111111
1023 9 | 511 | 1111111110 111111111

Elias-0 Code

 Elias-y code uses no more bits than unary,
many fewer for k > 2
— 1023 takes 19 bits instead of 1024 bits using
unary

« In general, takes 2 Hog,k- +1 bits

* To improve coding of large numbers, use
Elias-0 code
— Instead of encoding k, in unary, we encode k + 1
using Elias-y
— Takes approximately 2 log, log, k + log, Kk bits

Elias-0 Code

e Split k, into:
o kqa = |logy(ka +1)]

o ky. = kg — 2log2(kat+1)]

— encode k, in unary, k,. in binary, and k, in binary

Number (k) | kq k. | kqgqg | kagr | Code

1| O 0 0 00
2 1 0 1 011000
31 1 1 1 011001
§ 2 2 1 11101 10

15 3 7 2 0| 110 00 111

16 | 4 0 2 1 | 110 01 0000

255 7| 127 3 O (1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

#
Generating Elias-gamma and Elias-delta codes in Python
#

import math

def unary_encode(n):
return "1" * n + "O"

def binary_encode(n, width):
r = "n
for i in range(0,width):
if ((1<<i) & n) > 0:

r="1" + r
else:
r="0"+r
return r

def gamma_encode(n):
logn = int(math.log(n,2))
return unary_encode(logn) + " " + binary_encode(n, logn)

def delta_encode(n):
logn = int(math.log(n,2))
if n ==
return "O"
else:
loglog = int(math.log(logn+1,2))
residual = logn+l - int(math.pow(2, loglog))
return unary_encode(loglog) + " " + binary_encode(residual, loglog) + " " + binary_encode(n, logn)

if __name__ == "__main__":
for n in [1,2,3, 6, 15,16,255,1023]:

logn = int(math.log(n,2))
loglogn = int(math.log(logn+1,2))
print n, "d_r", logn
print n, "d_dd", loglogn
print n, "d_dr", logn + 1 - int(math.pow(2,loglogn))
print n, "delta", delta_encode(n)
#print n, "gamma", gamma_encode(n)
#print n, "binary", binary_encode(n)

Byte-Aligned Codes

Variable-length bit encodings can be a
problem on processors that process bytes

v-byte is a popular byte-aligned code
— Similar to Unicode UTF-8
Shortest v-byte code is 1 byte

Numbers are 1 to 4 bytes, with high bit 1
in the last byte, 0 otherwise

V-Byte Encoding

k Number of bytes

k<27 1
20 < k<2 |2
214 < k<221 | 3
221 < |k <228 | 4

k Binary Code | Hexadecimal

1 1 0000001 81

6 1 0000110 86

127 1 1111111 FF
128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C A0

V-Byte Encoder

public void encode(int[] input, ByteBuffer output) {
for(int i : input) {
while(i >= 128) {
output.put(i & Ox7F);
i >>>= 7;

+
output.put(i | 0x80);

V-Byte Decoder

public void decode(bytel[] input, IntBuffer output) {
for(int i=0; i < input.length; i++) {
int position = O;
int result = ((int)input[i] & OxT7F);

while((input[i] & 0x80) == 0) {
1 += 1;
position += 1;
int unsignedByte = ((int)input[i] & Ox7F);
result |= (unsignedByte << (7*position));

+

output.put (result) ;

Compression Example

* Consider inverted list with counts &
positions — (doc, count, positions)
(1,2,[1,7])(2,3,[6,17,197])(3, 1, [1])

* Delta encode document numbers and

positions:
(1,2,[1,6])(1,3,[6,11,180])(1, 1, [1])
« Compress using v-byte:
81 82 81 86 81 82 86 8B 01 B4 81 81 81

Skipping

* Search involves comparison of inverted
lists of different lengths
— Finding a particular doc is very inefficient

— “Skipping” ahead to check document numbers
is much better

— Compression makes this difficult
 Variable size, only d-gaps stored

» Skip pointers are additional data structure
to support skipping

Skip Pointers

* A skip pointer (d, p) contains a document
number d and a byte (or bit) position p
— Means there is an inverted list posting that

starts at position p, and the posting before it
was for document d

\

. N _ Inverted list
skip pointers

Skip Pointers

« Example
— Inverted list of doc numbers

5,11,17,21, 26, 34, 36, 37,45, 48, 51, 52, 57, 80, 89, 91,94, 101, 104, 119
— D-gaps
5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2,3,7,3,15
— SKip pointers

(17,3), (34,6), (45,9), (52,12), (89, 15), (101, 18)

Auxiliary Structures

Inverted lists often stored together in a single file
for efficiency

— Inverted file

Vocabulary or lexicon

— Contains a lookup table from index terms to the byte
offset of the inverted list in the inverted file

— Either hash table in memory or B-tree for larger
vocabularies

Term statistics stored at start of inverted lists
Collection statistics stored in separate file

For very large indexes, distributed filesystems are
used instead.

Index Construction

Algorithms for indexing

Indexes | Index Compression | Index Construction | Query Processing

Index Construction

* Simple in-memory indexer

procedure BUILDINDEX(D) > D is a set of text documents
I «+— HashTable() > Inverted list storage
n «— 0 > Document numbering
for all documents d € D do
n«—n+1
T «— Parse(d) > Parse document into tokens

Remove duplicates from T°
for all tokens ¢t € T' do
if I; ¢ I then
I «— Array()
end if
I;.append(n)
end for
end for
return /
end procedure

Merging

* Merging addresses limited memory problem

— Build the inverted list structure until memory
runs out

— Then write the partial index to disk, start
making a new one

— At the end of this process, the disk is filled
with many partial indexes, which are merged

 Partial lists must be designed so they can
be merged in small pieces

—e.d., storing in alphabetical order

Index A

Index B

Index A

Index B

Combined index

Merging

aardvark |2 |3 |4 | 5 | apple | 2 | 4

aardvartk | 6 | 9 | actor | 15 | 42 | 68

aardvartk |2 |3 |4 | 5 apple
aardvark 6|19 | actor | 15 | 42 | 68
aardvatk | 2 |3 |4 |56 |9 | actor | 15 | 42 | 68 | apple

44

Distributed Indexing

 Distributed processing driven by need to
index and analyze huge amounts of data
(i.e., the Web)

* Large numbers of inexpensive servers used
rather than larger, more expensive
machines

* MapReduce is a distributed programming
tool designed for indexing and analysis
tasks

Example

* Given a large text file that contains data
about credit card transactions

— Each line of the file contains a credit card
number and an amount of money

— Determine the number of unique credit card
numbers

* Could use hash table - memory problems
— counting is simple with sorted file

» Similar with distributed approach
— sorting and placement are crucial

MapReduce

Distributed programming framework that
focuses on data placement and distribution

Mapper

— Generally, transforms a list of items into another
list of items of the same length

Reducer
— Transforms a list of items into a single item

— Definitions not so strict in terms of number of
outputs

Many mapper and reducer tasks on a cluster of
machines

MapReduce

* Basic process

— Map stage which transforms data records into
pairs, each with a key and a value

— Shuffle uses a hash function so that all pairs with
the same key end up next to each other and on the
same machine

— Reduce stage processes records in batches, where
all pairs with the same key are processed at the
same time

* Idempotence of Mapper and Reducer provides
fault tolerance

— multiple operations on same input gives same
output

Input

MapReduce

Map

S

h
uttle Reduce
\\ Output

<zl

=
RE

5%

<N
ST
é -
7 X%

Y

49

Example

procedure MAPCREDITCARDS(input)
while not input.done() do
record < input.next()
card « record.card
amount «— record.amount
Emit(card, amount)
end while
end procedure

procedure REDUCECREDITCARDS(key, values)
total < 0
card < key
while not values.done() do
amount «— values.next()
total < total + amount
end while
Emit(card, total)
end procedure

50

Indexing Example

procedure MAPDOCUMENTSTOPOSTINGS(input)
while not input.done() do
document < input.next()
number < document.number
position < 0
tokens < Parse(document)
for each word w in tokens do
Emit(w, number:position)
position = position + 1
end for
end while
end procedure

procedure REDUCEPOSTINGSTOLI1STS(key, values)
word < key
WriteWord(word)
while not input.done() do
EncodePosting(values.next())
end while
end procedure

51

Result Merging

* Index merging is a good strategy for
handling updates when they come in large
batches

* For small updates this is very inefficient

—instead, create separate index for new
documents, merge results from both searches

— could be in-memory, fast to update and search

* Deletions handled using delete list

— Modifications done by putting old version on
delete list, adding new version to new
documents index

Query Processing

Using the index to search efficiently

Indexes | Index Compression | Index Construction | Query Processing

Query Processing

e Document-at-a-time

— Calculates complete scores for documents by
processing all term lists, one document at a
time

* Term-at-a-time

— Accumulates scores for documents by

processing term lists one at a time

* Both approaches have optimization
techniques that significantly reduce time
required to generate scores

Document-At-A-Time

salt

water
tropical

score

1:1

1:1

2:1

1:2

2:2

4:1

4:1

1:4

3:1

2:3

3:1

4:2

55

Pseudocode Function Descriptions

« getCurrentDocument()
— Returns the document number of the current posting of the
inverted list.
« skipForwardToDocument(d)
— Moves forward in the inverted list until getCurrentDocument() <= d.
This function may read to the end of the list.

* movePastDocument(d)
— Moves forward in the inverted list until getCurrentDocument() < d.

« moveTloNextDocument()
— Moves to the next document in the list. Equivalent to
movePastDocument(getCurrentDocument(%
« getNextAccumulator(d)
— returns the first document number d' >= d that has already has an
accumulator.

removeAccumulatorsBetween(a, b)
— Removes all accumulators for documents numbers between a and b.
A4 will be removed iff a <d < b.

Document-At-A-Time

Get best k documents for query Q from index |, with query score function g() and
document score function f(). Process one document at a time.

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L «— Array()
R «+ PriorityQueue(k)
for all terms w; in () do
l; < InvertedList(w;, I)
L.add([;)
end for
for all documents d € I do
sq «— 0
for all inverted lists /; in L do
if ;.getCurrentDocument() = d then
Sq < Sqa+ 9:(Q) fi(l;) > Update the document score
end if
l; . movePastDocument(d)
end for
R.add(sq4,d)
end for
return the top £ results from R
end procedure 57

Term-At-A-Time

salt

partial scores

old partial scores
water

new partial scores

old partial scores
tropical

final scores

1:1 4:1

1:1 4:1

1:1 4:1

1:1 2:1 4:1

1:2 2:1 4:2

1:2 2:1 4:2
1:2 2:2 3:1

1:4 2:3 2:2 4:2

58

Term-At-A-Time

Get best k documents for query Q from index |, with query score function g()
and document score function f(). Process one term at a time.

procedure TERMATATIMERETRIEVAL(Q, I, f, g k)
A + HashTable()
L < Array()
R < PriorityQueue(k)
for all terms w; in) do
l; < InvertedList(w;, I)
L.add([;)
end for
for all lists [; € L do
while [; is not finished do
d < l;.getCurrentDocument()
Ag + Ag+9:(Q) f(Li)
l;.moveToNextDocument|()
end while
end for
for all accumulators A; in A do
Sq +— Ay > Accumulator contains the document score
R.add(sq,d)
end for
return the top k results from R
end procedure

59

Optimization Techniques

« Term-at-a-time uses more memory for

accumulators, but accesses disk more
efficiently

* Two classes of optimization
— Read less data from inverted lists
e e.g., skip lists
 better for simple feature functions
— Calculate scores for fewer documents
* e.g., conjunctive processing
« better for complex feature functions

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

procedure TERMATATIMERETRIEVAL(Q, I, f, g, k)
A < Map()
L «— Array()
R « PriorityQueue(k)
for all terms w; in) do
l; < InvertedList(w;, I)
L.add(;)
end for
for all lists I; € L do
d() — —1
while [; is not finished do
if : =0 then
d « l;.getCurrentDocument()
Ag — Aa+9:(Q) f(ls)
l;.moveToNextDocument()
else
d « l;.getCurrentDocument()
d' — A.getNextAccumulator(d)
A.removeAccumulatorsBetween(dy, d')
if d = d’ then
Ag — Ag+ g:(Q) f (i)
[;.moveToNextDocument()
else
[;.skipForward ToDocument (d’)
end if
do — d/
end if
end while
end for
for all accumulators A; in A do

Conjunctive
Term-at-a-Time

Sq — Ag > Accumulator contains the document score

R.add(s4,d)
end for
return the top k results from R
end procedure

61

1: procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)

2 L — Array()

3 R «+ PriorityQueue(k)

4: for all terms w; in () do

5: l; < InvertedList(w;, I) . .

6 L.add(l;) Conjunctive
7 end for .
5 de -1 Document-at-a-Time
9: while all lists in L are not finished do

10: Sq <0
11: for all inverted lists /; in L do

12: if [;.getCurrentDocument() > d then

13: d « [;.getCurrentDocument()
14: end if

15: end for

16: for all inverted lists {; in L do

17: l;.skipForwardToDocument(d)

18: if [;.getCurrentDocument() = d then

19: Sa < Sq + 9:(Q) fi(l;) > Update the document score
20: l;.movePastDocument(d)
21: else
22: d— —1
23: break
24: end if
25: end for
26: if d > —1 then R.add(sq,d)
27: end if
28: end while
29: return the top k results from R

30: end procedure 6

Threshold Methods

* Threshold methods use the number of top-
ranked documents needed (k) to optimize
query processing

— for most applications, k is small
* For any query, there is a minimum score that

each document needs to reach before it can
be shown to the user

— score of the kth-highest scoring document
— gives threshold t

— optimization methods estimate t’ to ignore
documents

Threshold Methods

Example: find the top 2 documents
— Query term weights: [0.7, 0.1, 0.2]
— Doc term weights are between 0 and 1
— Ranker uses dot product of query and doc weights

Doc 1 term weights: [0.3, 0.4, 0.5]
— Score: 0.3*0.7 + 0.470.1 + 0.570.2 = 0.35

Doc 2 term weights: [0.5, 0.1, 0.1]
— Score: 0.5*0.7 + 0.170.1 + 0.170.2 = 0.38

Doc 3 term weights: [0.01, 1, 1]
— Score: 0.01*0.7 +1*0.1 + 170.2 = 0.307

— We know from the first term that doc 3 can’t possibly get a
high enough score to beat docs 1 and 2

— We can discard the document after looking at just one
term

Threshold Methods

* For document-at-a-time processing, use score
of lowest-ranked document so far for ©

— for term-at-a-time, have to use k«-largest score in
the accumulator table

* MaxScore method compares the maximum
score that remaining documents could have to
_[I

— uses the maximum score observed in term posting
lists to estimate the best possible document score

— safe optimization in that ranking will be the same
without optimization (cf. A* search)

MaxScore Example

eucalyptus

tree

» Indexer computes y, .,

— maximum score any document got for term “tree”

* Assume k =3, T'is lowest score for entire query after
first three docs

- Likely that 7" >, because of additional terms

— T "is the score of a document that contains both query terms

* Can safely skip over all gray postings, which have
scores < ...

Other Approaches

* Early termination of query processing
—ignore high-frequency word lists in term-at-a-
time
—ignore documents at end of lists in doc-at-a-time
— unsafe optimization
* List ordering

— order inverted lists by quality metric (e.g.,
PageRank) or by partial score

— makes unsafe (and fast) optimizations more
likely to produce good documents

Structured Queries

* Query language can support specification
of complex features
— similar to SQL for database systems

— query translator converts the user’s input
into the structured query representation

— Galago query language is the example used
here

—e.gd., Galago query:

#combine(#od:1(tropical fish) #od:1(aquarium fish) fish)

Evaluation Tree for Structured Query

S

} Hod:1

tropica

I

aquarium

fish

feature combinations

Hod:1 K proximity expressions

list data

69

Distributed Evaluation

» Basic process
— All queries sent to a director machine

— Director then sends messages to many index
servers

— Each index server does some portion of the query
processing

— Director organizes the results and returns them to
the user

* Two main approaches

— Document distribution
« by far the most popular

— Term distribution

Distributed Evaluation

* Document distribution

— each index server acts as a search engine for
a small fraction of the total collection

— director sends a copy of the query to each of
the index servers, each of which returns the
top-k results

— results are merged into a single ranked list by
the director

e Collection statistics should be shared for
effective ranking

Distributed Evaluation

 Term distribution

— Single index is built for the whole cluster of
machines

— Each inverted list in that index is then assighed to
one index server

* in most cases the data to process a query is not stored
on a single machine

— One of the index servers is chosen to process the

query
« usually the one holding the longest inverted list

— Other index servers send information to that server
— Final results sent to director

Caching

Query distributions similar to Zipf

— About %2 each day are unique, but some are very
popular

Caching can significantly improve

effectiveness

— Cache popular query results

— Cache common inverted lists

Inverted list caching can help with unique
queries

Cache must be refreshed to prevent stale
data

